Measurement of neural signals from inexpensive, wireless and dry EEG systems.
نویسندگان
چکیده
Electroencephalography (EEG) is challenged by high cost, immobility of equipment and the use of inconvenient conductive gels. We compared EEG recordings obtained from three systems that are inexpensive, wireless, and/or dry (no gel), against recordings made with a traditional, research-grade EEG system, in order to investigate the ability of these 'non-traditional' systems to produce recordings of comparable quality to a research-grade system. The systems compared were: Emotiv EPOC (inexpensive and wireless), B-Alert (wireless), g.Sahara (dry) and g.HIamp (research-grade). We compared the ability of the systems to demonstrate five well-studied neural phenomena: (1) enhanced alpha activity with eyes closed versus open; (2) visual steady-state response (VSSR); (3) mismatch negativity; (4) P300; and (5) event-related desynchronization/synchronization. All systems measured significant alpha augmentation with eye closure, and were able to measure VSSRs (although these were smaller with g.Sahara). The B-Alert and g.Sahara were able to measure the three time-locked phenomena equivalently to the g.HIamp. The Emotiv EPOC did not have suitably located electrodes for two of the tasks and synchronization considerations meant that data from the time-locked tasks were not assessed. The results show that inexpensive, wireless, or dry systems may be suitable for experimental studies using EEG, depending on the research paradigm, and within the constraints imposed by their limited electrode placement and number.
منابع مشابه
Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light
The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...
متن کاملRobot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملNeural Localization of Brand Social Responsibility Using EEG
Introduction: The purpose of this study was to investigate the neural effects of brand social responsibility (BSR) on consumer behavior. In the version of third marketing, consideration of the human spirit and its responsibility as a competitive strategy has been proposed. Materials and Methods: The investigation method was an exploratory-laboratory. Electrocardiographic instruments were used t...
متن کاملA New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological measurement
دوره 36 7 شماره
صفحات -
تاریخ انتشار 2015